

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

List of Courses which focuses on Professional Ethics, Gender, Human Values, Environment & Sustainability and other value framework

Department : Pure and Applied Physics

Programme Name : M.Sc (Electronics)

Academic Year : 2021-2022

Courses which focuses on Professional Ethics, Gender, Human Values, Environment & Sustainability and other value framework:

Sr. No.	Course Code	Name of the Course	
01. OPNPET1 Applications of Nanotechnology in Electronics			

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 Ma. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Scheme and Syllabus

Sem	Course Opted	Course Code	Name of the course	Credit	L:T:P	Internal	External	Total
ľ	Core-1	PEPATT1	Mathematical Techniques for Electronics	5	4+1+0	30	70	100
	Core -2	PEPATT2	Semiconductors Materials & Devices	3	3+0+0	30	70	100
		PEPALT2	Semiconductors Materials & Devices Lab	2	0+0+2	30	70	100
	Core -3	PEPATT3	Analog and Digital Electronics	3	3+0+0	30	70	100
		PPPALT3	Analog and Digital Electronics Lab	2	0+0+2	30	70	100
	Open Elective		Opted from the pool and offered by other departments	5	5+0+0	30	70	100
	Other if any*							
			TOTAL	20				600
			Open Elective offered by the Department					
	Open Elective	OPNPET1	Applications of Nanotechnology in Electronics	3	3+0+0	30	70	100
		OPNPEL1	Applications of Nanotechnology in Electronics Lab	2	0+0+2	30	70	100
	Core-4	PEPBTT1	Electromagnetic theory and Wave Propagation	5	4+1+0	30	70	100
	Core -5	PEPBTT2	IC Fabrication and VLSI Technology	5	4+1+0	30	70	100
	Core -6	PEPBTT3	Microprocessors and Microcontrollers	3	3+0+0	30	70	100
П		PEPBLT3	Microprocessors and Microcontrollers Lab	2	0+0+2	30	70	100
•	Discipline Specific	PEPBTD1	Advanced Communication System-1	3	3+0+0	30	70	100
	Elective 1	PEPBLD1	Analog and Digital Communication System Lab	2	0+0+2	30	70	100
	Other if any*							
			TOTAL	20				900

Open Elective: Applications of Nanotechnology in Electronics

Course Code: OPNPET1 Credits = 3 (3+0+0)

Course Objectives

- Foundation knowledge of the nanoscience field
- To bring out the distinct properties such as electronic, optical properties of nanostructures
- To make the students acquire an understanding the nanomaterials and their applications

Learning Outcomes

Upon successful completion of this course, students will be able to address following points:

- Learn about the distinct properties of nanomaterials
- Understand the principles of nanomaterial characterization techniques
- Describe the principle and operation of nanomaterial-based devices

Unit – **I:** Definition of Nano-science and nano technology, History of nanoscience, Energy band-gap in semiconductors, Fermi level, Donors, acceptors and deep traps, Excitons, Mobility, Conduction electrons, density of states, Zero dimensional (0D), one dimensional (1D), two dimensional (2D), three dimensional (3D), Nano-structured materials, Influence of nano over micro/macro.

Unit – **II:** Properties of Nanomaterials: Size dependence of properties, Optical: Absorption, transmission, Photoluminiscence, Fluoroscence, Phosphorescence, Surface Plasmon Resonance, effect of size of nano particles. Electrical: Conduction mechanisms in 3D (Bulk), 2D (Thin film) and Low dimensional systems.

Unit − **III**: Type of Nanomaterials: different type of nano materials, Carbon nanotube, Fullerene, Type of CNT: SWNT (Single wall nano tube), Multi wall nano tubes, Graphite and Graphene, metal nano particle silver and gold, ZnO and TiO₂ metal oxides, Semiconductors, Nano-composites, Creating nanoparticles by using software.

Unit – **IV**: Synthesis of nanomaterials: Combustion method, Sol-gel method, Co-precipitation method. Characterization tools for nanomaterials: X-Ray Diffraction, UV-VIS Spectrophotometer, Spectrofluorophotometer, Scanning Electron Microscopy, Transmission Electron Microscopy.

Reference Books:

- 1. Introduction to Nanotechnology, Charles P. Poole, Jr., Frank J. Owens, Wiley India (P)Limited New Delhi.
- 2. Nanoscience and Nanotechnology, K.K. Chattopadhyay, A.N. Banerjee, PHI Learning Private Limited, New Delhi.
- 3. Understanding of Nano Science and Technology, PoorviDutta, Sushmita Gupta, Global Vision Publishing House, New Delhi.
- 4. Nanotechnology, WM Breck, CBS Publishers & Distributors Pvt Ltd, New Delhi.